All inclusive calculations in physics pdf


 

ALL-INCLUSIVE CALCULATIONS IN PHYSICS for Senior Secondary Schools by Solomon Dauda YakwoThis book is creatively unique, highly simplified and. Classy picture collection of Beautiful Ankara Skirt And Blouse Styles These are the most beautiful ankara skirt and blouse trending at the moment. If you must. All-inclusive Calculations in Physics - - Rated 5 based on 2 Reviews " This book is creatively unique, highly simplified and very comprehensive in its.

Author:JAMIKA PHILMON
Language:English, Spanish, Hindi
Country:Luxembourg
Genre:Technology
Pages:727
Published (Last):26.01.2016
ISBN:912-9-78494-559-8
Distribution:Free* [*Register to download]
Uploaded by: JENNIE

65528 downloads 162134 Views 33.48MB PDF Size Report


All Inclusive Calculations In Physics Pdf

All Inclusive Calculations In medical-site.info Free Download Here N/A https://inlportal. medical-site.info All Inclusive. All Inclusive Calculations In Physics Reviews Facebook PDF. All information provided "as is" and for informational purposes only. Neither NGEX nor any of its. Thu, 01 Nov GMT all inclusive calculations in physics pdf -. This test information guide is not intended as an all-inclusive source of figures to.

In fact, physics is the present-day equivalent of what used to be called natural philosophy, from which most of our modern sciences arose. Students of many fields find themselves studying physics because of the basic role it plays in all phenomena. In this chapter we shall try to explain what the fundamental problems in the other sciences are, but of course it is impossible in so small a space really to deal with the complex, subtle, beautiful matters in these other fields. Lack of space also prevents our discussing the relation of physics to engineering, industry, society, and war, or even the most remarkable relationship between mathematics and physics. Mathematics is not a science from our point of view, in the sense that it is not a natural science. The test of its validity is not experiment.

Physics for scientests and Engineers Education. Local Business.

Mjp Physics Notes Education. Maths physics general knowledge Motivational quotes Education. Apsacs Education.

Physics Education. Pakistani Students in Austria Education. Quantum phy Education. Homeopathic Medicine Journal of Pakistan Magazine. Honest Chemist Chemical Company. Virtual University Chakwal Education. Recommendations and Reviews. If calculations in physics is one major reason students find physics difficult and perform poorly in examinations, then this book is the complete, definitive and timely solution.

See More. April 5, May 31, See All. All-inclusive Calculations in Physics updated their cover photo. The first was hemoglobin. One of the sad aspects of this discovery is that we cannot see anything from the pattern; we do not understand why it works the way it does. Of course, that is the next problem to be attacked.

Another problem is how do the enzymes know what to be? A red-eyed fly makes a red-eyed fly baby, and so the information for the whole pattern of enzymes to make red pigment must be passed from one fly to the next.

This is done by a substance in the nucleus of the cell, not a protein, called DNA short for desoxyribose nucleic acid. This is the key substance which is passed from one cell to another for instance sperm cells consist mostly of DNA and carries the information as to how to make the enzymes. First, the blueprint must be able to reproduce itself. Secondly, it must be able to instruct the protein. Concerning the reproduction, we might think that this proceeds like cell reproduction.

Cells simply grow bigger and then divide in half. Must it be thus with DNA molecules, then, that they too grow bigger and divide in half?

Every atom certainly does not grow bigger and divide in half! No, it is impossible to reproduce a molecule except by some more clever way.

Schematic diagram of DNA. The structure of the substance DNA was studied for a long time, first chemically to find the composition, and then with x-rays to find the pattern in space. The result was the following remarkable discovery: The DNA molecule is a pair of chains, twisted upon each other.

The backbone of each of these chains, which are analogous to the chains of proteins but chemically quite different, is a series of sugar and phosphate groups, as shown in Fig. Thus perhaps, in some way, the specific instructions for the manufacture of proteins are contained in the specific series of the DNA. Attached to each sugar along the line, and linking the two chains together, are certain pairs of cross-links.

Whatever the letters may be in one chain, each one must have its specific complementary letter on the other chain. What then about reproduction? Suppose we split this chain in two. How can we make another one just like it? This is the central unsolved problem in biology today. The first clues, or pieces of information, however, are these: There are in the cell tiny particles called ribosomes, and it is now known that that is the place where proteins are made.

But the ribosomes are not in the nucleus, where the DNA and its instructions are. Something seems to be the matter. However, it is also known that little molecule pieces come off the DNA—not as long as the big DNA molecule that carries all the information itself, but like a small section of it.

ALL-INCLUSIVE CALCULATIONS IN PHYSICS

This is called RNA, but that is not essential. It is a kind of copy of the DNA, a short copy. The RNA, which somehow carries a message as to what kind of protein to make goes over to the ribosome; that is known. When it gets there, protein is synthesized at the ribosome.

That is also known. However, the details of how the amino acids come in and are arranged in accordance with a code that is on the RNA are, as yet, still unknown.

We do not know how to read it. Certainly no subject or field is making more progress on so many fronts at the present moment, than biology, and if we were to name the most powerful assumption of all, which leads one on and on in an attempt to understand life, it is that all things are made of atoms, and that everything that living things do can be understood in terms of the jigglings and wigglings of atoms. Astronomy is older than physics. In fact, it got physics started by showing the beautiful simplicity of the motion of the stars and planets, the understanding of which was the beginning of physics.

But the most remarkable discovery in all of astronomy is that the stars are made of atoms of the same kind as those on the earth. Atoms liberate light which has definite frequencies, something like the timbre of a musical instrument, which has definite pitches or frequencies of sound.

When we are listening to several different tones we can tell them apart, but when we look with our eyes at a mixture of colors we cannot tell the parts from which it was made, because the eye is nowhere near as discerning as the ear in this connection. However, with a spectroscope we can analyze the frequencies of the light waves and in this way we can see the very tunes of the atoms that are in the different stars. As a matter of fact, two of the chemical elements were discovered on a star before they were discovered on the earth.

Helium was discovered on the sun, whence its name, and technetium was discovered in certain cool stars. This, of course, permits us to make headway in understanding the stars, because they are made of the same kinds of atoms which are on the earth. Now we know a great deal about the atoms, especially concerning their behavior under conditions of high temperature but not very great density, so that we can analyze by statistical mechanics the behavior of the stellar substance.

Even though we cannot reproduce the conditions on the earth, using the basic physical laws we often can tell precisely, or very closely, what will happen. So it is that physics aids astronomy. Strange as it may seem, we understand the distribution of matter in the interior of the sun far better than we understand the interior of the earth.

What goes on inside a star is better understood than one might guess from the difficulty of having to look at a little dot of light through a telescope, because we can calculate what the atoms in the stars should do in most circumstances. One of the most impressive discoveries was the origin of the energy of the stars, that makes them continue to burn. One of the men who discovered this was out with his girlfriend the night after he realized that nuclear reactions must be going on in the stars in order to make them shine.

She was not impressed with being out with the only man who, at that moment, knew why stars shine. Well, it is sad to be alone, but that is the way it is in this world.

Furthermore, ultimately, the manufacture of various chemical elements proceeds in the centers of the stars, from hydrogen. How do we know? Because there is a clue. The proportions are purely the result of nuclear reactions. By looking at the proportions of the isotopes in the cold, dead ember which we are, we can discover what the furnace was like in which the stuff of which we are made was formed.

Astronomy is so close to physics that we shall study many astronomical things as we go along. First, meteorology and the weather. Of course the instruments of meteorology are physical instruments, and the development of experimental physics made these instruments possible, as was explained before.

However, the theory of meteorology has never been satisfactorily worked out by the physicist. It turns out to be very sensitive, and even unstable. If you have ever seen water run smoothly over a dam, and then turn into a large number of blobs and drops as it falls, you will understand what I mean by unstable.

You know the condition of the water before it goes over the spillway; it is perfectly smooth; but the moment it begins to fall, where do the drops begin?

texttachenf

What determines how big the lumps are going to be and where they will be? That is not known, because the water is unstable. Even a smooth moving mass of air, in going over a mountain turns into complex whirlpools and eddies.

In many fields we find this situation of turbulent flow that we cannot analyze today. Quickly we leave the subject of weather, and discuss geology!

The question basic to geology is, what makes the earth the way it is? The most obvious processes are in front of your very eyes, the erosion processes of the rivers, the winds, etc. It is easy enough to understand these, but for every bit of erosion there is an equal amount of something else going on.

Mountains are no lower today, on the average, than they were in the past. There must be mountain-forming processes.

You will find, if you study geology, that there are mountain-forming processes and volcanism, which nobody understands but which is half of geology. The phenomenon of volcanoes is really not understood. What makes an earthquake is, ultimately, not understood. It is understood that if something is pushing something else, it snaps and will slide—that is all right. But what pushes, and why? The theory is that there are currents inside the earth—circulating currents, due to the difference in temperature inside and outside—which, in their motion, push the surface slightly.

Thus if there are two opposite circulations next to each other, the matter will collect in the region where they meet and make belts of mountains which are in unhappy stressed conditions, and so produce volcanoes and earthquakes. What about the inside of the earth? A great deal is known about the speed of earthquake waves through the earth and the density of distribution of the earth. However, physicists have been unable to get a good theory as to how dense a substance should be at the pressures that would be expected at the center of the earth.

In other words, we cannot figure out the properties of matter very well in these circumstances. We do much less well with the earth than we do with the conditions of matter in the stars. The mathematics involved seems a little too difficult, so far, but perhaps it will not be too long before someone realizes that it is an important problem, and really works it out. The other aspect, of course, is that even if we did know the density, we cannot figure out the circulating currents. Nor can we really work out the properties of rocks at high pressure.

Incidentally, psychoanalysis is not a science: it is at best a medical process, and perhaps even more like witch-doctoring. The witch doctor has a theory that a disease like malaria is caused by a spirit which comes into the air; it is not cured by shaking a snake over it, but quinine does help malaria. So, if you are sick, I would advise that you go to the witch doctor because he is the man in the tribe who knows the most about the disease; on the other hand, his knowledge is not science.

Psychoanalysis has not been checked carefully by experiment, and there is no way to find a list of the number of cases in which it works, the number of cases in which it does not work, etc. The other branches of psychology, which involve things like the physiology of sensation—what happens in the eye, and what happens in the brain—are, if you wish, less interesting.

But some small but real progress has been made in studying them. One of the most interesting technical problems may or may not be called psychology. The central problem of the mind, if you will, or the nervous system, is this: when an animal learns something, it can do something different than it could before, and its brain cell must have changed too, if it is made out of atoms. In what way is it different?

We do not know where to look, or what to look for, when something is memorized. We do not know what it means, or what change there is in the nervous system, when a fact is learned.

jeremiah (chibuikeizutex) on Pinterest

This is a very important problem which has not been solved at all. Assuming, however, that there is some kind of memory thing, the brain is such an enormous mass of interconnecting wires and nerves that it probably cannot be analyzed in a straightforward manner. There is an analog of this to computing machines and computing elements, in that they also have a lot of lines, and they have some kind of element, analogous, perhaps, to the synapse, or connection of one nerve to another.

This is a very interesting subject which we have not the time to discuss further—the relationship between thinking and computing machines.

It must be appreciated, of course, that this subject will tell us very little about the real complexities of ordinary human behavior. All human beings are so different. It will be a long time before we get there.

We must start much further back. If we could even figure out how a dog works, we would have gone pretty far. Dogs are easier to understand, but nobody yet knows how dogs work. If they tell him what a frog is, that there are so many molecules, there is a nerve here, etc.

If they will tell us, more or less, what the earth or the stars are like, then we can figure it out. In order for physical theory to be of any use, we must know where the atoms are located.

In order to understand the chemistry, we must know exactly what atoms are present, for otherwise we cannot analyze it. That is but one limitation, of course. There is another kind of problem in the sister sciences which does not exist in physics; we might call it, for lack of a better term, the historical question. How did it get that way? If we understand all about biology, we will want to know how all the things which are on the earth got there.

There is the theory of evolution, an important part of biology. In geology, we not only want to know how the mountains are forming, but how the entire earth was formed in the beginning, the origin of the solar system, etc. That, of course, leads us to want to know what kind of matter there was in the world. How did the stars evolve? What were the initial conditions? That is the problem of astronomical history.

A great deal has been found out about the formation of stars, the formation of elements from which we were made, and even a little about the origin of the universe. There is no historical question being studied in physics at the present time. Of course they may be, and the moment we find they are, the historical question of physics will be wrapped up with the rest of the history of the universe, and then the physicist will be talking about the same problems as astronomers, geologists, and biologists.

Finally, there is a physical problem that is common to many fields, that is very old, and that has not been solved. It is not the problem of finding new fundamental particles, but something left over from a long time ago—over a hundred years.

Nobody in physics has really been able to analyze it mathematically satisfactorily in spite of its importance to the sister sciences. It is the analysis of circulating or turbulent fluids. If we watch the evolution of a star, there comes a point where we can deduce that it is going to start convection, and thereafter we can no longer deduce what should happen.

A few million years later the star explodes, but we cannot figure out the reason. We cannot analyze the weather. We do not know the patterns of motions that there should be inside the earth.

The simplest form of the problem is to take a pipe that is very long and push water through it at high speed. We ask: to push a given amount of water through that pipe, how much pressure is needed?

Similar articles


Copyright © 2019 medical-site.info. All rights reserved.
DMCA |Contact Us